Secure Data Provenance and Inference Control with Semantic Web

Secure Data Provenance and Inference Control with Semantic Web
Secure Data Provenance and Inference Control with Semantic Web is published by in August 2014. This book has 478 pages in English, ISBN-13 978-1466569430.

With an ever-increasing amount of information on the web, it is critical to understand the pedigree, quality, and accuracy of your data. Using provenance, you can ascertain the quality of data based on its ancestral data and derivations, track back to sources of errors, allow automatic re-enactment of derivations to update data, and provide attribution of the data source.

Secure Data Provenance and Inference Control with Semantic Web supplies step-by-step instructions on how to secure the provenance of your data to make sure it is safe from inference attacks. It details the design and implementation of a policy engine for provenance of data and presents case studies that illustrate solutions in a typical distributed health care system for hospitals. Although the case studies describe solutions in the health care domain, you can easily apply the methods presented in the book to a range of other domains.

The book describes the design and implementation of a policy engine for provenance and demonstrates the use of Semantic Web technologies and cloud computing technologies to enhance the scalability of solutions. It covers Semantic Web technologies for the representation and reasoning of the provenance of the data and provides a unifying framework for securing provenance that can help to address the various criteria of your information systems.

Illustrating key concepts and practical techniques, the book considers cloud computing technologies that can enhance the scalability of solutions. After reading this book you will be better prepared to keep up with the on-going development of the prototypes, products, tools, and standards for secure data management, secure Semantic Web, secure web services, and secure cloud computing.

You may also like...

Leave a Reply